

CND 203 RF CIRCUIT DESIGN 2023

Course Description

This course aims to develop a comprehensive understanding of RF design circuits concepts, including impedance matching, signal propagation, transmission lines, noise analysis and minimization as well as the behavior of RF circuits at different frequencies. One of the goals is to enhance the capability of the design and integration of modern RF circuits blocks including LNAs, mixers, antennae, filters, voltage-controlled oscillators, ...etc. Also, students will gain hands on experience on RF circuit design, simulation and optimization using commercial simulation tools.

Contact Hours

Credit Hours	Lecture Hours	Lab Hours	Student work	Total
6	24 (1.25x2)/week	21 (3x1)/week	48	93

Prerequisites

Introduction to Analog Electronics

Learning Outcomes

After successful completion of this course, the student will be able to:

- 1. Define the wireless system design aspects and RF system specifications.
- 2. Design and simulate Low noise amplifiers, Mixers, filters, oscillators and get an overview of system integration.
- 3. Understand the relationship and limitations of circuit topology and device characteristics to achieve competitive specifications.
- 4. Understand the practical challenges and considerations in high frequency circuits design and how this impacts the design techniques.
- 5. Use modern advanced CAD tools to design, simulate, and create layout of RFIC.

Course Materials

Textbook:

- Behzad Razavi, RF Microelectronics, 2nd Edition, Pearson
- Pozar, D. M. (2011). *Microwave Engineering.* Wiley.

References:

- Tony Chan Carusone, David Johns, Kenneth Martin, analog Integrated Circuits, 5th Edition, Wiley.
- Matthaei, G. L., Young, L., & Jones, E. M. T. (1980). *Microwave Filters, Impedance-Matching Networks, and Coupling Structures.* Artech House.
- Gonzalez, G. (2017). Microwave Transistor Amplifiers: Analysis and Design. Prentice Hall.
- Hong, J., & Lancaster, M. (2001). *Microstrip Filters for RF/Microwave Applications.* Wiley.
- I.C. Hunter, Theory and Design of Microwave Filters, London: IEE Press, 2001.
- R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, Hoboken, New Jersey, John Wiley & Sins, 2007
- Constantine A. Balanis, Antenna Theory and Analysis. 4th Edition, Wiley
- Thomas H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd Edition. Cambridge: Cambridge University Press.
- Material derived from the IEEE Journal, Transactions, and the International Solid-state Circuits Conference (ISSCC) proceedings.

CAD Tools:

- Cadence Virtuoso (Schematic Editor for simulating lumped circuits elements and transistorlevel circuits, Layout Editor & EMX for simulating the layout view of passive elements and structures).
- Suitera for simulating passivise circuit elements.
- CST for simulating passive microwave components, structures, and microwave antennas.

Course Project: By the end of this course the students are required to deliver a complete project (chosen from variety of proposals) assigned by the industry experts and university professors instructors.

Course Topics and Schedule

Week	Lecture		Lab
1	Introduction to RF Circuits		Lab_1: Introduction to EM
	\succ	Overview of RF frequency bands	Simulation Tools using a
	\succ	Importance of RF in communication systems	Simple Spiral Inductor Model.
	\succ	Evolution of personal communication systems	
	\succ	Challenges in high frequency design (coupling,	
		radiation, parasitic, EM simulation)	
	\succ	Challenges in passive design in high frequencies	

	Basic Concepts in RF design	
2	 Communication Concepts RAZAVI CH.3 Analog Modulation (AM, FM, PM) Digital modulation (ASK, FSK, PSK, GMSK, GFSK, QAM) Multiple Access Techniques (FDMA, TDMA, CDMA, Hybrid FDMA and TDMA) Wireless Standards (GSM, IS-95 CDMA, WCMDA, LTE (4G), 5G) 	Lab_2: Introduce Suitera tool on a spiral inductor & use as sub-circuit in Virtuoso to simulate active circuit.
3	Transmission Lines and Smith Chart> Fundamentals of transmission lines> Distributed impedance> Impedance invertors> Impedance matching techniques> Introduction to the Smith Chart> Quarter Wave Transformer> Transmission line as a resonator> Matching and maximum power transfer> S-parameters	Lab_3: Transmission Lines
4	RF Passive Components > Inductors - Basic structure and inductor geometries - Inductance equations and parasitic capacitance - Self-resonant frequency of an inductor - Inductor modelling > Capacitors - MOS Capacitors - Metal insulator metal capacitors (MIM Cap) Metal plate capacitor Finger Capacitor > Resistors - Film Resistors - Diffused Resistors > Transmission Lines Suitable T-Lines for integration - Microstrip line - Coplanar lines - Suspended Stripline	Lab_4: Investigate Inductor design including optimization. EM simulation of inductor in high frequencies using Suitera.
5	Low Noise Amplifiers > General Considerations > The Input Matching Problem > LNA Configurations > Gain Switching > Band Switching	Lab_5: Testing R, L, C in High Frequencies and Simulating an RLC 2nd Order Filter

Г

	Differential LNAs		
6	<u>RF Fi</u>	lters and Matching Networks	Lab_6: Design and simulate full
	≻	Filter types	LNA - we use transistor level
	\checkmark	Filtering Functions	schematic.
	\checkmark	Filter approximation techniques	
	\checkmark	Low frequency prototypes (ladder network, impedance	
		invertors, coupled resonator filters, Transversal	
		coupling matrix model (Eigen mode model))	
	≻	The RF filter design problem	
	\succ	Filter parameter extraction and optimization techniques	
	\succ	Filter design example	
7	RF Mixers		Lab_7: Design of a coupled line
	\succ	Principles of RF mixing	bandpass filter on microstrip
	≻	General considerations	line
	-	Performance parameters	
	-	Mixer noise figure	
	-	Single balanced and double balanced mixers	
	\succ	Downconversion mixers	
	\succ	Upconversion mixers	
	\succ	Improved Mixer Topologies	
8	Lectu	re 8: RF Oscillators	Lab_8: Design of a Cross-
	\succ	Basic Principles	Coupled LC Oscillator using
	\succ	Cross Coupled Oscillators	EMX
	\succ	Voltage Controlled Oscillators	
	\succ	VCOs with Wide Tuning Range	
	≻	Phase Noise	
	\checkmark	Design Procedure	
	\checkmark	Quadrature Oscillators	
9	Lectu	re 9:Antenna and Arrays	Lab_9: Design of a Cross-
	\succ	Basic radiation mechanism	Coupled LC Oscillator using
	\succ	Antenna types	EMX
	\succ	Antenna parameters	
	\succ	Printed antennas	
	\succ	Antenna noise temperature	
	\succ	Antenna measurements	
	\succ	Antenna Arrays	
	\succ	Beam Steering	
	\checkmark	Phased Arrays	
10	Lectu	<u>re 10: Receiver Design Example</u>	Lab_10: Mixer Design
	≻	System Level Considerations	
	►	Receiver Design	
	-	LNA	
	-	Mixer	
	-	AGC	